Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 58(3): 185-195, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32518175

RESUMO

BACKGROUND: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. METHODS: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. RESULTS: We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. CONCLUSION: Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.


Assuntos
Anemia Diseritropoética Congênita/genética , Predisposição Genética para Doença , Glicoproteínas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Anemia Diseritropoética Congênita/patologia , Feminino , Regulação da Expressão Gênica/genética , Testes Genéticos , Genética Populacional , Humanos , Masculino , Complexos Multiproteicos/genética , Mutação/genética
2.
Proc Natl Acad Sci U S A ; 117(18): 10067-10078, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32321831

RESUMO

Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2 transport and their relationship with hematological disorders remain ill defined. We developed a method to track the flow of O2 in individual RBCs by combining ultrarapid solution switching (to manipulate gas tension) with single-cell O2 saturation fluorescence microscopy. O2 unloading from RBCs was considerably slower than previously estimated in acellular hemoglobin solutions, indicating the presence of diffusional barriers in intact cells. Rate-limiting diffusion across cytoplasm was demonstrated by osmotically induced changes to hemoglobin concentration (i.e., diffusive tortuosity) and cell size (i.e., diffusion pathlength) and by comparing wild-type cells with hemoglobin H (HbH) thalassemia (shorter pathlength and reduced tortuosity) and hereditary spherocytosis (HS; expanded pathlength). Analysis of the distribution of O2 unloading rates in HS RBCs identified a subpopulation of spherocytes with greatly impaired gas exchange. Tortuosity imposed by hemoglobin was verified by demonstrating restricted diffusivity of CO2, an acidic gas, from the dissipative spread of photolytically uncaged H+ ions across cytoplasm. Our findings indicate that cytoplasmic diffusion, determined by pathlength and tortuosity, is a major barrier to efficient gas handling by RBCs. Consequently, changes in RBC shape and hemoglobin concentration, which are common manifestations of hematological disorders, can have hitherto unrecognized and clinically significant implications on gas exchange.


Assuntos
Transporte Biológico/genética , Eritrócitos/metabolismo , Gases/sangue , Oxigênio/sangue , Adulto , Idoso , Dióxido de Carbono/sangue , Citoplasma/metabolismo , Feminino , Voluntários Saudáveis , Hemoglobinas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...